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Introduction
Coating flows are useful for covering a large surface area with one or more thin,
uniform liquid layers. The liquid film is subsequently dried or cured and, often,
serves to protect or decorate the substrate1. Planar liquid sheets falling
vertically under gravity and guided by two vertical wires have been proposed
to coat a horizontally moving substrate2, and are of importance in film casting
processes. The fluid dynamics of these sheets is amenable to long-wave
asymptotic analysis if the fluid is incompressible (constant density) and
isothermal, and if the Reynolds number is small3.

For sufficiently thin planar liquid sheets, long-range London-van der Waals
attractions4, 5 may be important and may cause the rupture of these sheets. In
this paper, the effects of only London-van der Waals body forces on the fluid
dynamics of thin, vertical, planar liquid sheets at low Reynolds numbers are
considered, while electrostatic and double-layer forces are disregarded. The
sheets are assumed to be thin enough for the London-van der Waals forces to be
operative, and sufficiently thick that a continuum theory of the liquid is
applicable.

London-van der Waals forces have been the subject of extensive research in
recent years because of their importance in the rupture of thin films on solid
substrates6, thinning of the dimpled liquid films formed as drops or bubbles
approach fluid-fluid interfaces7, free films, soap films, coalescence of droplets or
emulsions, etc. In all these cases, the rupture of the film results from an
amplification of spontaneous fluctuations by long range molecular forces due to
the London-van der Waals attraction. These forces are always operative in very
thin films, i.e., films of thickness ranging from 10nm to 100nm.

The stability of thin, planar liquid sheets is characterized by two instability
modes: the axisymmetric, varicose, peristaltic or squeezing mode, and the
antisymmetric, undulation or bending mode. The important mode for the
rupture of the film is the varicose one. The film rupture, however, may not be
analysed accurately by means of linear stability analysis since its validity
requires that the film perturbations be small.
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In this paper, an asymptotic, long-wave analysis of thin, planar liquid sheets
subjected to London-van der Waals body forces is presented. This analysis
shows that, in contrast to thin films on solid substrates6, the leading order flow
is governed by two partial differential equations for the leading order film
thickness and axial velocity. Since the flow is characterized by the Reynolds,
Froude and capillary numbers and the Hamaker constant, a, detailed
asymptotic analysis is presented for small Reynolds and capillary numbers,
small Hamaker’s constants, and large Froude numbers in order that the effects
of gravity, London-van der Waals forces, surface tension and viscosity appear
at the same order in the perturbation parameter. Analytical solutions of the
leading order equations are obtained for very large capillary numbers, i.e. small
surface tension. A linear, temporal stability analysis is also performed in order
to determine the effects of surface tension, viscosity and London-van der Waals
forces on the stability of thin, vertical, planar liquid sheets. Finally, numerical
methods are employed to solve the non-linear equations corresponding to
steady, vertical, planar liquid sheets, in order to determine the effects of the
Froude and Reynolds numbers, and Hamaker’s constant on plane stagnation
flows and film casting processes. Comparisons between the results presented in
this paper and those of reference3, where planar liquid sheets at low Reynolds
numbers were studied in the absence of London-van der Waals forces, illustrate
the effects of the Hamaker constant on the fluid dynamics of these sheets.

Formulation
Consider a planar liquid sheet infinite in the z direction so that its motion may
be considered to be two-dimensional in the (x, y) plane, and assume that the
fluid is incompressible (constant density), isothermal and Newtonian so that the
conservation equations of mass and linear momentum can be written as

where t is time; u, and v are the axial and transverse velocity components of the
liquid, respectively; x and y are the axial and transverse co-ordinates,
respectively; ρ and µ, are the fluid’s density and dynamic viscosity, respectively;
p is the pressure; g is the gravitational acceleration; W is the potential of the
body forces; and the asterisk denotes dimensional variables.

Equations (1)-(3) are subjected to symmetry conditions at the planar sheet’s
axis, i.e.

(1)

(2)

(3)
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(4)

and kinematic and dynamic boundary conditions at the sheet’s interface
y* = h*(x*, t*) where h* denotes the local half-width of the planar liquid sheet.
The kinematic condition establishes that the liquid-surroundings interface is a
material surface where the shear stress is continuous, and the jump in normal
stresses across the interface must be balanced by surface tension. The
kinematic and dynamic boundary conditions at the planar liquid sheet’s
interface, i.e. at y* = h*(x*, t*), are 

where σ* denotes the liquid’s surface tension and p*
e is the pressure of the

surroundings which have been assumed to be dynamically passive. This
assumption is justified since, if the surroundings are gases, they have, in
general, smaller density and dynamic viscosity than those of liquids. This
implies that the surrounding gases may not introduce strong velocity variations
on each cross-section of the liquid sheet although they may affect its dynamics.

In addition to the above symmetry, kinematic and dynamic boundary
conditions, upstream and downstream boundary conditions are required to
fully specify and determine the dynamics of the planar liquid sheet. For planar
sheets emerging from a nozzle, the upstream boundary conditions i.e., the
boundary conditions at the nozzle exit, are rather complex since the flow relaxes
from channel, i.e. no-slip conditions, to the kinematic and dynamic boundary
conditions given by equations (5)-(7). Moreover, the body forces may be different
for the flow within the nozzle than for the free falling sheet on account of the
solid walls of the nozzle and the free surfaces.

In this paper, the equations governing the fluid dynamics of thin, planar
liquid sheets are derived without accounting for the upstream and downstream
boundary conditions, and by assuming that the body forces are those of
London-van der Waals, i.e.

(8)

(5)

(6)

(7)
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where

(9)

and Λ* is the London-van der Waals constant.
In general, W* is a function of t*, x* and y*. For thin planar liquid sheets,

however, the potential of body forces may be simplified and replaced by the
following approximation

(10)

where A* denotes the Hamaker constant.
For thin, planar liquid sheet, ∈ = h*

0/L* <<1 where h*
0 and L* are the

characteristic thickness and axial distance, respectively. The above condition on
∈ also corresponds to a long-wave analysis of the governing equations.

We now introduce the following non-dimensional variables

(11)

so that the continuity equation may be written as

(12)

where

(13)

The non-dimensional linear momentum equations may be written as

while the non-dimensional kinematic and boundary conditions read as

(16)

(17)

(14)

(15)
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(18)

where

(19)

are the Froude, Reynolds and capillary numbers, respectively, and AH is the
non-dimensional Hamaker constant.

For large Froude and small Reynolds numbers, small London-van der Waals
forces, and large surface tension, we assume that

(20)

where A, C, F and R are of O(1), so that linear momentum equations, i.e.
equations (13) and (14), become

whereas the normal stress boundary condition becomes

(23)

The liquid sheet’s velocity components, pressure and half-width may be
expressed as

(24)

(25)

(26)

(27)

(21)

(22)
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Substitution of equations (24)-(27) into the continuity (equation (12)) and linear mom-
entum (equations (21) and (22)) equations yields the following sequence of problems.

To O(∈ 0):

To O(∈ 2):

Substitution of equations (24)-(27) into the kinematic (cf. equation (16)) and dynamic
boundary conditions (cf. equation (23)), and expansion of the variables at (x, h, t) in
Taylor’s series around (x, h0, t) yield the following sequence problems.

To O(∈ 0):

To O(∈ 0):

(37)

(38)

(34)

(35)

(36)

(31)

(32)

(33)

(28)

(29)

(30)
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The boundary conditions at the symmetry axis can be expressed as (cf.
equation (4))

(39)

The solution of equation (29) subject to equation (39) is

(40)
i.e. to leading order, the axial velocity component is independent of the
transverse co-ordinate.

The solutions of equations (30) and (28) subject to equation (39) are,
respectively,

(41)

where the prime denotes partial differentiation with respect to x.
The solution of equations (32) and (33) subject to equation (39) are,

respectively,

(42)

where

(43)

and G(x, t) is a function which may be determined at higher order in the asymp-
totic expansion.

Substitution of equations (40) and (41) into equation (34) yields

(44)

while equation (36) results in

(45)

Finally equation (38) becomes

(46)

In the absence of attractive London-van der Waals body forces, equation (46)
reduces to that of the viscous-gravity-capillary planar liquid sheets derived by
Taylor in the appendix to Brown2,3. Equation (46) is also valid for horizontal,
planar liquid sheets if the first term in its right-hand-side is set to zero. In fact,
Erneux and Davis8 recently derived analogous expressions to equations (44)
and (46) using a long-wave theory for horizontal, planar liquid sheets.

Remark. An equation identical to equation (46) may be obtained if only the
velocity components and the pressure are expanded as indicated in equations
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(24)-(26). If this expansion is used, h0 in equation (46) must be replaced by h.
Note that equations (44) and (46) correspond to long-wave approximations
which are not valid near boundaries; however, they will be used in the
“Presentation of results” section to determine the fluid dynamics of steady,
plane stagnation flows and steady film casting processes, and will be assumed
to be valid at both the upstream and downstream boundaries. At these
boundaries, the London-van der Waals forces may not obey as a simple
expression as equation (10); however, such an expression will be assumed to be
valid up to the boundaries.

Viscous-gravity liquid sheets. If there is no surface tension, i.e., Ca = ∞, or if
surface tension is small, i.e., Ca = C/∈ where C = O(1), use of the asymptotic
expansions given by equations (24)-(27) yields equation (44) and equation (46)
without the third term on the right-hand side of that equation.

Viscous liquid sheets in zero gravity. If there is no surface tension, i.e. Ca = ∞,
or if surface tension is small, i.e. Ca = C/∈ where C = O(1), and Fr = ∞, use of
the asymptotic expansions given by equations (24)-(27) yields equation (44) and
equation (46) without the first term on the right-hand-side of that equation. This
result also applies in microgravity environments when Fr = F/∈ 3 where F =
O(1).

Other body forces. As indicated by, for example, Israelachvili4, Derjaguin et
al.5 and Slattery7, the London-van der Waals body force potential may be
expressed as

(47)

where the values of B*
LW and n depend on the film thickness. For thin films, B*

LW
generally decreases whereas n increases as the film thickness is increased. Of
course, the effects of the London-van der Waals potential are negligible for thick
films.

Steady state solutions
For steady, planar liquid sheets, equations (44) and (46) become

(48)

where C1 is an integration constant which can be set to one without loss of
generality. In general, it is impossible to get the analytical solution to equation
(46) except in some particular cases, some of which are analysed in the
following paragraphs.

Ca = ∞ and Re = 0. In this case, equation (48) may be integrated to obtain

    For the potential given by equation (47), the fourth term in the right-hand

side of equation (46) is to be replaced by  where  =  
nA

h

h

x
A

B

u hn

LW

n
0

0

0 0
1

∂
∂ µ

*
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(49)

where α is an integration constant. Substitution of h0 = 1/B into equation (49)
and integration of the resulting equation yield

(50)

where β is another integration constant and γ = 
3A—
2α . Equation (50) is also valid if

Ca = ∈ –1C where C = O(1).
Ca = ∞ and Fr = ∞. In this case, integration of equation (48) yields

(51)

Substitution of h0 = 1/B into equation (51) and integration of the resulting
equation yield9

(52)

where

where

(55)

If b2 = 4c, the solution of equation (51) may be written as

(56)

Equations (52) and (56) also hold for Ca = ∈ –1C and Fr = ∈ –3F where C and F
are O(1).

General case. For arbitrary values of the Froude, Reynolds and capillary
numbers and Hamaker’s constant, equation (48) may be written as

(57)

(53)

(54)
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which is a third-order, non-linear, ordinary differential equation. The order of this
equation can be reduced by one by means of the transformation q = dh0—dx which
yields

(58)

Equation (58) is still non-linear and its solution may be obtained numerically. It
must be noted that, if Fr = ∞ or Fr = ∈ –3F where F = O(1), the last term of
equation (58) is zero and one solution of this equation is q = 0, i.e., h0 = C2, and,
therefore, B =  

1—
C2, where C2 is a constant which may be set to one without loss of

generality. This is not surprising since Fr = ∞ and Fr = ∈ –3F where F = O(1)
correspond to zero- and micro-gravity conditions, respectively. The linear
stability of the steady state solution h0 = B = 1 for Fr = ∞ is analysed in the next
section.

Linear temporal stability for Fr = ∞
For Fr = ∞ or Fr = ∈ –3F where F = O(1), the stability of the steady state
solution h0 = B = 1 may be analysed by substituting

(59)

where |H| << 1 and |b| << 1, into equations (44) and (46) and neglecting the non-
linear terms in the resulting equation. This yields the following system of linear,
partial differential equations

Substitution of

(62)

where α and β are complex constants, i2 = –1, k is the real wave number, and ω
is the angular frequency, into equations (60) and (61) results in a system of
homogeneous, linear algebraic equations for α and β which has a non-trivial
solution if its determinant is identically equal to zero. This condition implies
that

(63)

which indicates that equations (60) and (61) are dispersive.
Small wavenumber asymptotics. If the wavenumber is small, i.e. k << 1, the

wavelength is large, and equation (63) may be written asymptotically as

(60)

(61)
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(64)

which indicates that long waves are unstable on account of the ± sign if A ≠ 0.
If A = 0, long waves are stable.

Large wavenumber asymptotics. If the wavenumber is large, i.e. k >> 1, the
wavelength is short, and equation (63) may be written asymptotically as

(65)

provided that R ≠ 4C.
Equation (65) indicates that short waves are stable provided that R ≠ 4C. If R

= 4C, waves with wavenumbers k < ( 3AR——
4    )

1–2 are unstable. If A = 0, short waves
are stable.

Critical wavenumbers correspond to ωI = 0 where ωI denotes the imaginary
part of ω. Note that ωI > 0 implies stability, and that criticality corresponds to
temporal oscillations according to equation (62). The radicand in equation (63)
is negative for k < (3ARC——

R–4C )1–2 if R ≠ 4C, which implies that, since k is a real number,
R must be greater than 4C. Therefore, if R < 4C, the planar liquid sheet is
linearly unstable, whereas, if R > 4C, the critical wavenumber corresponds to kc
= (3AC)

1–2. If R = 4C, the critical wavenumber is kc = ( 3AR——
4    )

1–2 and waves with k <
kc are linearly unstable. If A = 0, all the waves are stable, while, if C = ∞, there
is linear instability.

The temporal, linear stability analysis performed in this section clearly
indicates that the London-van der Waals body forces may cause the rupture of
planar liquid sheets. The stability analysis presented here may not be used to
determine the film rupture because of its linearity. An accurate analysis of the
rupture requires the use of non-linear methods and numerical techniques for the
solution of equations (44) and (46) subject to appropriate initial and boundary
conditions.

Presentation of results
Some sample results corresponding to steady, plane stagnation flows and film
casting processes are presented when the London-van der Waals forces are of
great importance and C = ∞. These results are to be compared with those of
reference3 where attractive body forces were not considered, and different flow
approximations were analysed.

Steady, plane stagnation flows
For steady, plane stagnation flows, the boundary conditions at the nozzle exit
and at the solid wall, i.e. at the downstream boundary, are

(66)
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Figure 1 shows the leading-order thickness and axial velocity component of the
planar liquid sheet obtained from the numerical solution of equation (57) for R
= 1 and different values of R/F and A. This equation was discretized by means
of a conservative, second-order accurate, iterative method with h0(1) = 1039 until

(67)

where tol = 10–12, k denotes the k-th iteration and NI is the number of grid
points. In the calculations presented here, NI was varied until grid-independent
results were obtained. In most of the calculations presented here, NI = 1,000
unless stated otherwise.

Since the leading-order thickness increases rapidly to ∞ at the downstream
boundary, only a small fraction of the h0(x) curve is illustrated in Figure 1.

Figure 1 (top) shows that the leading-order thickness and axial velocity com-
ponent of the planar liquid sheet are monotonically increasing and decreasing,
respectively, functions of the axial co-ordinate for R/F = 1, and that the
deceleration of the sheet decreases as the Hamaker constant is increased. Figure
1 (top) also shows very few differences between the curves corresponding to 
A = 1 and A = 0.1.

Similar trends to those illustrated in Figure 1 (top) have also been observed
for R/F = 0.01, although for Reynolds-to-Froude number ratios less than one,
the deceleration of the planar liquid sheet is larger and the effect of the Hamaker
constant is less pronounced than those illustrated in Figure 1 (top), as shown in
the middle graphs of Figure 1 which correspond to R/F = 0.01.

For Reynolds-to-Froude number ratios greater than one, neither the
thickness nor the axial velocity component of the planar liquid sheet are
monotonic functions of the axial co-ordinate as shown in Figure 1 (bottom).
This figure indicates that, first, there is a contraction of the planar liquid sheet,
followed by thickening. This figure also shows that the difference between the
results corresponding to A = 1 and A = 0.1 are smaller than those between A =
1 and A = 10. In particular, a Hamaker constant greater than one results in a
thickening of the planar liquid sheet closer to the downstream boundary than
Hamaker’s constants less than or equal to one. It must be noted that the London-
van der Waals forces are inversely proportional to the third power of the
leading-order thickness; therefore, these forces are most effective when the
planar liquid sheet’s thickness is smallest. As the sheet approaches the
downstream boundary, its thickness increases and the effects of the London-van
der Waals forces decrease as shown in the graph of the axial velocity
component in Figure 1 (bottom).

Figure 2 shows the effects of the Reynolds number and Reynolds-to-Froude
number ratio on the leading-order thickness and axial velocity component for A
= 1 and different approximations to plane stagnation flows. These effects were
determined with the full equation (57) and and R = 1, equation (57) with R = 0
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Figure 1.
Leading-order
thickness (left) and
axial velocity
component (right) for
plane stagnation
flows. (Equation (57)
with C = 0 and 
R = 1; top row: 
R/F = 1; middle row:
R/F = 0.01; bottom
row: R/F = 100.)
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Figure 2.
Leading-order thickness

(left) and axial velocity
component (right) for

plane stagnation flows.
(Equation (57) with C =

0 and A = 1; top row:
R/F = 1 for models 1

and 2; middle row: R/F
= 0.01 for models 1 and

2; bottom row: R/F =
100 for models 1 and 2.)
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and finite values of R/F, and equation (57) with R = 1 and R/F = 0 which are
here referred to as models 1, 2 and 3, respectively.

Figure 2 indicates that the differences between the results corresponding to
models 1 and 2 are very small. This figure also shows that the thickening of the
planar liquid sheet increases as the Froude number is decreased; this is a
consequence of the gravitational pull as shown in the top and middle graphs of
Figure 2 which indicate that the thickening of the planar liquid sheet increases
and occurs further downstream as R/F is decreased. Figure 2 (bottom) shows a
non-monotonic behaviour for models 1 and 2 and a monotonic one for model 3.
The latter is a consequence of the fact that R/F = 0 in model 3. Note that, in
Figure 2 (bottom), the sheet first contracts and then thickens for models 1 and
2, whereas it continually thickens for model 3.

Similar trends to those shown in Figure 2 have also been observed for A = 10
and 0.01, although the axial velocity component decelerates at a slower rate and
the differences between models 1 and 2 increase as A is increased.

Steady film casting processes
Although film casting processes of very thin planar liquid sheets may be nearly
impossible to carry out experimentally, the results presented in this section
illustrate the effects of the downstream boundary conditions on the numerical
solution of equation (57). This equation was solved by using the same boundary
conditions at x = 0 as those of equation (64), the same numerical technique as
that of the previous section, and different take-up or downstream boundary
conditions.

Figure 3 correspond to model 1, R = 1, three different values of R/F, and two
different take-up velocities. This figure shows that a boundary layer forms at
the downstream boundary, and the thickness of this layer decreases as A is
increased. In order to resolve this boundary layer accurately, 10,000 grid points
were used in the numerical calculations. Similar trends to those shown in the
plots of the first and second rows of Figure 3 have also been observed for R/F ≤
0.01; in fact, the differences between the results corresponding to the first and
second rows of Figure 1 are not visible for the scale used in both figures.

The graphs in the third row of Figure 3 correspond to R/F = 100 and exhibit
different trends to those of the first two rows. The latter show downward con-
cavity in the leading order thickness for A = 1 and 10, and upward concavity for
A = 0.01. By way of contrast, the curves presented in the third row of Figure 3
for A = 1 and 10 exhibit an inflection point in the leading-order thickness, and
this point owes its presence to the large gravitational pull associated with small
Froude numbers.

Similar trends to those shown in the first three rows of Figure 3 have also
been observed for u0(1) ≥ 100, except that the thickness of the boundary layer at
the downstream boundary decreases as u0(1) is increased as shown in the fourth
row of Figure 3.
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Figure 3.
Leading-order thickness

(left) and axial velocity
component (right) for

film casting processes.
(Equation (57) with C =

0 and R = 1; first row
from top: R/F = 1 and
u0(1) = 10; second row

from top: R/F = 0.01
and u0(1) = 10; third row
from top: R/F = 100 and

u0(1) = 10; fourth row
from top: R/F = 100 and

u0(1) = 100.) 
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Figure 4 illustrates the leading-order thickness and axial velocity component of
the planar liquid sheet for the three models described in the previous section.
This figure shows very small differences between the three models for u0(1) = 10
and different values of A, and illustrates that model 3 predicts a slightly lower
axial velocity component than models 1 and 2 due to the zero gravitational pull
in that model, indicating that, for a take-up speed equal to ten, the effects of the
gravitational pull are very small. The differences between the predictions of the
three models increase as A is increased as indicated in the results presented in
the third row of Figure 4. Similar trends to those shown in Figure 4 have also
been observed for u0(1) = 100.

Similar trends to those presented in Figure 4 have been noted for R/F = 0.01
as illustrated in Figure 5 which indicates that the differences between the models
1 and 3 are negligible for small Reynolds-to-Froude number ratios. This is again
due to the fact that gravitational effects are almost negligible for the Froude
numbers considered in Figure 5. However, as the magnitude of the Reynolds-to-
Froude number ratio is increased, substantial differences between the three
models considered in this paper can be noted as illustrated in Figure 6. For
example, the first and second rows of this figure show that model 3 predicts a
much slower axial velocity component than models 1 and 2. This is not at all
surprising, for model 3 neglects the gravitational pull. Furthermore, both the
leading-order thickness and axial velocity component predicted by models 1 and
2 exhibit inflection points, whereas the concavity of the predictions of model 3 is
of the same sign. In addition, the thickness of the boundary layer predicted by
model 3 is smaller than those predicted by models 1 and 2.

Conclusions
Asymptotic methods have been used to derive the long-wave equations governing
the fluid dynamics of thin, free-falling, planar liquid sheets subject to London-van
der Waals forces at low Reynolds numbers. It has been shown that, in order to
include the effects of gravity, surface tension, viscosity and London-van der Waals
body forces, the Reynolds and capillary numbers and Hamaker’s constant must be
small, whereas the Froude number must be large. It has also been shown that the
dynamics of thin, free-falling, planar sheets are governed by two, non-linearly
coupled, partial differential equations for the leading order film thickness and axial
velocity component, in contrast with films on solid substrates whose dynamics is
governed by only one partial differential equation for the film thickness.

Analytical solutions of the steady equations have been found for small
surface tension and zero Reynolds number or large Froude numbers. A linear,
temporal stability analysis of the leading order equations governing the
dynamics of thin, planar sheets indicates that these sheets are unstable for
certain wavenumbers. Since the analysis presented in the paper used symmetry
conditions at the sheet centreline, it may be used to study the symmetric or
varicose rupture of planar sheets.

Numerical studies of planar liquid sheets at low Reynolds numbers with no
surface tension indicate that, for plane stagnation flows, the deceleration of the
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Figure 4.
Leading-order thickness

(left) and axial velocity
component (right) for

film casting processes.
(Equation (57) with C =

0; top row: A =1; middle
row: A = 10; bottom

row: A = 0.1.)
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Figure 5.
Leading-order thickness
(left) and axial velocity
component (right) for
film casting processes.
(Equation (57) with C =
0; top row: A = 1;
middle tow: A = 10;
bottom row: A = 0.1.)



Asymptotic and
numerical 

analysis

61

Figure 6.
Leading-order thickness

(left) and axial velocity
component (right) for

film casting processes.
(Equation (57) with C =

0; top row: A = 1;
middle row: A = 10;

bottom row: A = 0.1.)
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sheet as it approaches the solid wall decreases as the London-van der Waals
forces are increased. This is a consequence of the fact that these forces are
inversely proportional to the third power of the sheet’s thickness. Furthermore,
the effects of these body forces decrease as the Froude number is increased. For
Reynolds-to-Froude numbers greater than one, it has been observed that the
thickening of the sheet as it approaches the solid boundary increases as the
Hamaker constant is increased.

Numerical experiments of film casting processes have also been performed
in order to assess the effects of the attractive London-van der Waals forces and
boundary conditions on the fluid dynamics of planar liquid sheets. These
experiments indicate that, for high take-up speeds, a, boundary layer is formed
at the downstream boundary, and the thickness of this layer decreases as the
London-van der Waals forces are increased. For Reynolds-to-Froude numbers
larger than one, it has been observed that both the leading-order thickness and
axial velocity component are very sensitive to the value of the Hamaker
constant. For Hamaker’s constants less than one, the concavity of the leading-
order thickness is of the same sign and, at most, exhibits an inflection point
near to the downstream boundary. However, for Hamaker’s constants equal to
or larger than one, the leading-order thickness shows an inflection point near to
the mid-point between the upstream and downstream boundaries.

Numerical experiments have also been performed with three different flow
approximations which account for or neglect inertia and/or the gravitational pull.
The results of these experiments indicate that these approximations produce very
similar results for Reynolds-to-Froude number ratios equal to or less than one.
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